
Tractable Optimal Competitive Scheduling

Jeremy Frank and James Crawford and Lina Khatib ∗ and Ronen Brafman †

Computational Sciences Division
NASA Ames Research Center, MS 269-3

frank@email.arc.nasa.gov
Moffett Field, CA 94035

Abstract

In this paper we describe the problem of Optimal Competi-
tive Scheduling, which consists of activities that compete for
a shared resource. The objective is to choose a subset of activ-
ities to schedule, sequence them, and decide how much time
they are allowed, in such a way that temporal and resource
constraints are satisfied and overall schedule quality is max-
imized. While most such problems are NP-complete, very
restricted versions of this problem are known to be tractable.
In this work we describe tractable variations on this problem
that correspond to realistic scheduling problems. The first
class of tractable OCS problems arises due to limitations on
the objective function that permit casting the problem as a
Linear Program; with one additional assumption on activity
feasibility windows, we identify a problem class where an op-
timal activity ordering can be found in polynomial time. The
second class arises by reformulation of the problem as a Val-
ued Constraint Satisfaction Problem and exploiting known re-
sults on tractability. We describe implementations of special-
purpose algorithms designed to solve tractable OCS prob-
lems, and identify different solver performance characteris-
tics based on properties of the problem instances.

Introduction
This paper is concerned with the problem of allocating re-
source to multiple users within a pre-defined time period.
The users have preferences describing how they value dif-
ferent allocations of the resource. We seek an optimal allo-
cation schedule for this resource. We are particularly mo-
tivated by the problem of scheduling resources for various
NASA and industry applications, and cite a few motivating
problems. NASA’s Deep Space Satellite Network (DSN) is
needed for transmitting data from various space missions to
Earth. Each mission has different needs for DSN time, de-
pending on satellite and planetary orbits. Typically, the DSN
is over-subscribed, in that not all missions will be allocated
as much time as they want. Scheduling satellite downlink
(also known as Range Scheduling (BWH04)) is quite similar
to DSN scheduling, with multiple satellites requiring time
to downlink data of varying levels of importance. Telescope
observation scheduling involves a telescope at a fixed loca-
tion that must observe targets for varying periods of time,

∗QSS
†Ben Gurion University, and USRA-RIACS

with science quality depending on the characteristics of the
observations (Bre96). Finally, satellite observation schedul-
ing involves choosing targets for a satellite with a steerable
instrument, again with schedule quality depending on the
targets observed and the characteristics of the observations
(WS00).

These problems have several common themes:

• Activities have release times, due dates and processing
times, and compete for a shared resource.

• Activities may have other constraints imposed on them
(e.g. minimum task separation, synchronization con-
straints, and so on.)

• Activities have value based on the resource allocation, and
those values can be combined (usually added) to calculate
a global utility of a legal schedule.

• The problem spans a finite horizon, and the goal is to find
a feasible schedule maximizing value.

We refer to such problems as Optimal Competitive
Scheduling (OCS) problems. The problems feature time
and resource constraints, but unlike problems of minimiz-
ing makespan, require packing as many requests as possible
into the designated horizon in the best way possible 1. OCS
generalizes the problem of scheduling activities on unary re-
sources with release times, due dates, processing times and
weighted rejection penalties (1|ripidi|wiUi in Graham’s no-
tation (Brü98)) in that an activity A may have an associ-
ated preference function fA that describes the value based
on the resource allocation, rather than just a value. Thus, the
general decision problem is NP-complete. OCS also gen-
eralizes the recently introduced Temporal Knapsack Prob-
lem (BFH+05) and Overconstrained Disjunctive Temporal
Problems with Preferences (PMP05); in OCS, activities may
have a wider set of inter-activity constraints and preference
functions.

Numerous restricted versions of this problem have been
shown to be tractable. One example is the case where the
resource conflicts have been resolved, the preference func-
tion obeys some reasonable restrictions, and all that remains
is to calculate optimal activity durations (MMK+04). These

1OCS can be thought of as over-subscription planning, limited
to scheduling problems.

problems can be posed as Linear Programs. Another ex-
ample is the case in which activities have fixed start times,
duration and value, and all that remains is to choose the
best feasible subset of activities (SS00). These problems
are addressed by virtue of methods exploiting the underlying
graph structure of the problem.

In this paper, we push the state of the art in terms of
tractable algorithms for OCS problems. We begin by for-
mally defining the OCS. Next, we extend tractability results
for problems with flexible duration and preferences. We then
extend tractability results for the case of choosing subsets of
activities and ordering these activities. Here, we begin with
the case of activities of fixed duration and fixed preference
value, then handle finite numbers of duration choices with
preferences over these durations. We describe the results of
empirical studies to determine the best implementation in
the case of choosing and ordering of activities. Finally, we
describe some related work, and conclude with future work.

Optimal Competitive Scheduling
An OCS problem consists of a resource R, a time horizon
[0..h], and a set of activities A. For activity A ∈ A, let
As be the start time, Ad be the duration, and Ae be the end
time of activity. All activities A use one unit of resource
R. For each activity A we have: As + Ad = Ae, 0 ≤
aslb

≤ As ≤ asub
≤ h, and 0 ≤ aelb

≤ Ae ≤ aeub
≤

h. Similarly, activities can have minimum and maximum
durations: 0 ≤ adlb

≤ Ad ≤ adub
≤ h. The problem may

also contain Simple Temporal Constraints (DMP91) of the
form a ≤ A∗ − B∗ ≤ b, where A∗ ∈ {As, Ae} and B∗ ∈
{Bs, Be}, which can enforce activity orderings. Let T be a
fixed time assignment schedule; As(T), Ae(T), Ad(T) refer
to the assignments to variables of activity A in the schedule.

Generally, the quality of a schedule can depend both on
start time and duration, leading to preferences of the form
fA(As(T), Ad(T)). For example, in telescope observation
scheduling, the schedule quality depends on the telescope
elevation achieved during an observation, since the line-of-
sight through the atmosphere is reduced at higher elevations
(FK05). These objective functions can have local optima
that make optimization hard, even for the simple case of bi-
linear objective functions (objective functions of the form∑

i

∑
j 6=i aijxixj) coupled with linear constraints (SN88).

Problems often have preferences over sets of activity allo-
cations. For example, in telescope observation scheduling,
astronomers express preferences over total observing time
for a single target. This requires observing the target over
the course of several nights. The preference is expressed
over the total scheduled time on the target. Similarly, in the
satellite range scheduling and DSN scheduling problems, it
may be necessary to schedule several successive downlinks
for one spacecraft; the preference in this case is expressed
over the total scheduled downlink time. Let π be a partition
of the activities inA and let πi be the ith element of the par-
tition. The general preference function for πi has the form
fπi

(As(T)...Ad(T)) for all A ∈ πi. Throughout this paper,
we will limit ourselves to preferences over sums of activity
duration, that is, fπi

(
∑

A∈πi
Ad(T)).

Tractable Choice of Activity Duration
In this section we consider tractable versions of the OCS that
center on the choice of activity duration based on the prefer-
ence function. Specifically, we extend the Linear Program-
ming (LP) formulation described in (MMK+04) to develop
tractable classes of OCS problems.

The Simple Temporal Problem with Preferences
The Simple Temporal Problem with Preferences (STPP)
consists of a set of events E , including a special event E0

whose value is constrained to be zero. Events are con-
strained by a set of Simple Temporal Constraints, of the form
a ≤ |Ei − Ej | ≤ b, Ei, Ej ∈ E . Finally, event distances
have an associated preference function. We assume there is
a dependent variable Dij = Ei − Ej , and write the prefer-
ence function fij(Dij). In (MMK+04) it is shown that, if
fij(Dij) is a convex, piecewise linear function and the Sim-
ple Temporal Constraints are consistent, then an assignment
of time values to events maximizing

∑
i,j fij(Dij) can be

found by solving a Linear Programming (LP) problem. Let
fk

ij(Dij) be the kth linear component of fij(Dij). The LP
formulation contains a variable Ei for each event, a variable
Dij for each event distance, and a variable Vij for each pref-
erence function fij(Dij). The LP is then

max
∑

Vij

subj ∀Ei, Ej ∈ E Dij = Ei − Ej

∀Ei, Ej ∈ E a ≤ Ei − Ej ≤ b
∀k Vij ≤ fk

ij(Dij)

The OCS problem is “activity” centric, but the set of ac-
tivities A induces a set of events E = A∗|A ∈ A. It is
easy to generalize STPPs to handle preferences over sums
of activity durations according to a partition. Suppose the
number of partitions is p; we now only need to introduce
one variable Dp for each duration sum and one variable Vp

for each preference function We rewrite the LP as follows:

max
∑

Vp

subj ∀A ∈ A Ad = Ae −As

∀A,B ∈ A a ≤ A∗ −B∗ ≤ b
∀i Di =

∑
A∈πi

Ad

∀k Vp ≤ fk
p (Dp)

Optimal Activity Ordering
The STPP assumes that there are no resource violations con-
sistent with the temporal constraints. To solve an OCS prob-
lem using STPPs, ordering activities may be required to
guarantee no resource violations. However, an arbitrary set
of activity orderings combined with the original constraints
may be inconsistent. While this condition can be checked
very efficiently using Bellman Ford or a variety of other
techniques, all activity orderings may be inconsistent, i,e,
the scheduling problem may have no feasible solution if all
activities must be scheduled. In this case, some activities
must be rejected. Finally, arbitrary orderings may be subop-
timal. In general, these problems can only be resolved using
combinatorial search.

We now describe our first tractable OCS problem. If only
one activity can use the resource at any time, and the activi-
ties’ feasibility windows obey a relatively simple condition,
there is a way to optimally order activities, leading to an
STPP that can be solved using the LP formulation described
previously. We begin with some definitions:

Definition 1 Two requested activities A,B are a contain-
ment pair if (aslb

< bslb
and belb

< aelb
).

Definition 2 Given an OCS problem on a unary resource R
whose metric temporal constraints are feasible and limited
to time windows and activity ordering such that there are
no containment pairs. The natural order ≺N of activities
is the ordering induced by the start times of the associated
visibility windows, i.e. A ≺N B iff aslb

< bslb
.

Certain scheduling problems turn out to have no contain-
ment pairs. For example, downlink windows for a constel-
lations of satellites flying close together at the same altitude
and the same orbit have this property, as do limited observa-
tion scheduling problems in astronomy.

Definition 3 Given an OCS problem on a unary resource R
whose metric temporal constraints are feasible and limited
to time windows with no containment pairs. and a grounded
schedule T . Let As(T) < Bs(T). A,B are adjacent iff there
is no request C such that As(T) < Cs(T) < Bs(T). A,B
are mismatched if B ≺N A and As(T) < Bs(T).

Theorem 1 Given an OCS problem on a unary resource R
whose metric temporal constraints are feasible and limited
to time windows. If A is a set of activities with no contain-
ment pairs, A has no feasible solution with all activities, or
an optimal grounded schedule T with no mismatched pairs

To prove this theorem, it is enough to prove that given any
feasible schedule S with mismatched pairs, we can derive
a feasible schedule with no mismatched pairs of the same
value. As a result, any optimal schedule can be transformed
into an optimal schedule with no mismatched pairs. First
we provide a lemma about swapping adjacent mismatched
pairs, then an algorithm for deriving equivalent schedules
with no mismatched pairs.

Lemma 1 Given an OCS problem whose metric temporal
constraints are feasible and limited to time windows and ac-
tivity ordering, and assume there are no containment pairs.
Let S be any feasible grounded schedule. Let A and C be
any two activities. If A and C are adjacent and mismatched,
then there is a feasible schedule T of the same quality as S
in which A and C are not mismatched.

Proof of Lemma (see illustration in Figure 1): Since A
and C are mismatched we know A ≺N C and therefore
aslb

< cslb
. Let I be the smallest interval containing the

time allocated to both A and C, that is, [Cs(T), Ae(T)]. I is
in the intersection of the visibility window of both activities
satisfied by A and C, therefore the time span allocated to
each of A and C may occur anywhere in I . Because A and
C are adjacent, there is no other request with allocated time
in I to interfere with repositioning A and C. Since the pair
is mismatched and not a containment pair, we can swap A
and B in the ground schedule without adjusting their size

B

A

C
dC

S

T

dA

dB

dC dAdB

dCdAdB

U dCdA dB

I

I

Figure 1: Swapping Adjacent Mismatched Pairs in
Grounded Schedule.

and without violating any constraints. Keeping their sizes
the same leaves the schedule quality unchanged. 2

Proof of Theorem 1: Let S be any optimal schedule
for R. Let k be the number of activity allocations in S.
Make k−1 traversals of the timeline, left-to-right: whenever
two adjacent allocations appear that are mismatched, swap
them as described in the lemma. After the k − 1 traversals,
there are (according the the theory of bubble sort!), no
remaining mismatched pairs. Since S was optimal, so is the
bubble-sorteded schedule.

Since there are no containment pairs, there is a unique
total order of activities, guaranteeing termination of the
sort. Since having a mismatched pair in a schedule implies
having an adjacent mismatched pair, this completes the
proof for Theorem 1. 2

We note that this construction still works if there are tem-
poral constraints between pairs of time-points. The only
change is that we must check for containment after propa-
gation of all temporal constraints; nontrivial timepoint sep-
aration and activity orderings opposite to the natural order-
ing ≺N may induce containments not apparent in the time
windows. Finally, we consider the case of a resource with
capacity c, and assume all activities use one unit of resource.
Since we preserve the assumption that there are no contain-
ment pairs, if d > c activities overlap, we can choose a set
of c activities that may overlap, and order the remaining ac-
tivities before and after this set. The number of possibilities
is O(d), since we are restricted to choosing activity sets that
don’t violate ≺N .

It is tempting to think that we can find the optimal
ordering for a containment pair. By way of underscoring the
difficulties in this, we demonstrate that containment pairs
actually break the optimal ordering for non-containment
pairs of activities. The following simple example shows this:

activity A: Aslb
= 0, Aeub

= 4, Adub
= 2, fA(Ad) = 2dA

activity B: Bslb
= 1, Beub

= 5, Adub
= 2, fB(Ad) = dB

activity C: Cslb
= 2, Ceub

= 3, Adub
= 1, fC(Ad) = 10dC

The highest value activity C takes on its maximum duration
in the optimal solution. This leaves 2 gaps to be filled by
lower value activities (A and B). The gaps are as follows:
[0 2] and [3 5]. If A < B, A gets assigned [1 2] and B
gets assigned [3 5]. The value is 2+2=4. If B < A, B
gets assigned [1 2] and A gets assigned [3 5]. The value is
1+4=5. Thus, B < A is the optimal ordering for A and B
conditioned on C being accepted, contradicting the optimal
ordering when no containment pairs are present.

Tractable Activity Subset Selection
In the previous section we described ways in which OCS
can be made tractable, even when we must order activities.
However, these cases do not allow searching for feasible or
optimal subsets of activities to schedule. In this section, we
will consider tractable cases of OCS even while searching
over subsets of activities, as well as ordering and selection
of activity duration.

Implicit Activity Rejection
To ensure tractability and still allow activity subset selection,
it is enough to ensure every activity can be assigned zero du-
ration during the calculation of the optimal activity duration.
This means activities can be implicitly rejected after the se-
quencing phase is completed. This condition can be verified
on initialization. Unfortunately, the combined assumption
of convex preferences that extend to the case where activi-
ties may have zero duration is quite restrictive. For example,
in satellite and telescope observation scheduling domains,
very small amounts of data may be almost as bad as no data
at all. Convex preferences and zero activity duration are not
suitable to model such problems.

Tractable Explicit Activity Rejection
In this section we exploit a property of Valued Constraint
Satisfaction Problems (VCSPs) to guarantee tractability.
Consider an ordering O of the variables of a hypergraph H .
Define Hi as follows: Hn = H , and Hi is constructed by
taking all hyper-edges including variable Vi, merging them
into one edge, and eliminating Vi. Recall that the induced
width of ordering O (Dec03) is defined as the maximum
size of any edge in any Hi, and the elimination width is the
minimum induced width over all orderings O. Any class
of VCSPs of bounded induced width k is solvable in expo-
nential time in k using bucket elimination (LM03); since k
is bounded as N grows, these problems are tractable. Bac-
chus (private communication) proves that the tree-width and
the induced width of a graph are equal. Recall that chordal
graphs have the property that any cycle of length ≥ 4 has an
edge between two non-adjacent nodes on the cycle (called
a chord). A theorem due to (Gol80) shows that if G is a
chordal graph, the tree width = ω − 1 (one less than the
maximum clique in the graph). For chordal graphs, various
polynomial time algorithms exist for calculating the variable
ordering O inducing minimum tree width; for example, see
(RL76). If we have a class of VCSPs whose induced con-
straint graphs are chordal, and the clique number ω grows
logarithmically to ensure tractability.

We recall that a tractable, optimal algorithm exists for
OCS where Ad has only one possible value ad, aslb

= asub

and aelb
= aeub

(SS00); these problems consists only of ac-
tivity selection. This result is based on the observation that
activities can be transformed into a weighted chordal graph;
in this graph nodes are activities, edges correspond to over-
lapping activities (implying only one can be selected), and
the problem is to select the maximum weight independent
set. In the more general case where activities have a feasi-
bility window, we observe that the feasibility windows still
form a chordal graph. However, we now can order activities
(within the constraints imposed by the feasibility windows)
to resolve resource conflicts.

Based on these observations, we now construct a class
of OCS problems that can be formulated as VCSPs with
bounded induced width and with bounded variable domain
size. Consider the class of OCS with a bounded number
of overlapping activity feasibility windows; let that bound
be k. For now, we also assume that there are only absolute
temporal constraints, i.e. there are no time-point separation
constraints. Finally, we assume that activity durations are
fixed and activities provide fixed value f(ad). The problem
is to select and order a set of activities F ⊂ A satisfying all
of the constraints that maximizes

∑
A∈F f(ad).

The variables of the VCSP are divided into two categories.
The first category consists of the time-point variables A∗.
The second category corresponds to pairs of activities A,B
that overlap; we denote these variables VAB . The values of
the variable represent choices that ensure there are no re-
source or temporal constraint violations for this pair of ac-
tivities. The possible choices for VAB are:

• < (A and B scheduled, A < B)

• > (A and B scheduled, B < A)

• A (A scheduled, but B rejected)

• B (B scheduled, but A rejected)

• ⊥ (Both A and B rejected)

The constraints of this VCSP are also divided into cate-
gories. The first category consists of the original temporal
constraints in the problem. The second category consists
of constraints that ensure that activity acceptance conditions
are coordinated between the activity variables that “share” a
activity. Consider two variables VAB and VAC . These order
and reject constraints on VAB , VAC enforces the following:

• (VAB = {<,>,A}) ⇔ (VAC = {<,>,A})
• (VAB = {B,⊥}) ⇔ (VAC = {C,⊥})

The third category of constraints propagate the tempo-
ral constraints on activity time-points if overlapping ac-
tivities are ordered. These order and time constraints on
VAB , As, Ae, Ba and Be enforces the following:

• (VAB =<) ⇔ ((bslb
= aslb

+ ad) ∧ (aeub
= beub

− bd))
• (VAB =>) ⇔ ((aslb

= bslb
+ bd) ∧ (beub

= aeub
− ad))

The final ingredient is the valuation of each satisfying as-
signment in the constraints. Any assignment not enumer-
ated above provides value −∞. Satisfying assignments of

VAC

VAB VBC

As Ae Bs Be Cs Ce

order
+reject

order
+time

order
+time

order
+time

Bs+bd= Be Cs+cd= CeAs+ad= Ae

order
+reject

order
+reject

B

A

C

dA

dC

dB

OCS Problem

Bipartite Version of
VCSP Constraint Graph

Figure 2: The Valued CSP Representation of the OCS Prob-
lem. We show the bipartite representation, using square
nodes for variables, round nodes for constraints, with edges
indicating a variable is in the scope of a constraint).

the temporal constraints and the order and time constraints
provide no value. Let CA be the number of order and re-
ject constraints involving A. Then VAB = A has value
f(ad)
CA

, VAB = B has value f(bd)
CB

, VAB = {>,<} has value
f(ad)
CA

+ f(bd)
CB

and VAB = ⊥ has value zero. The constraint
graph of this VCSP is shown in Figure 2.

Theorem 2 The class of OCS problems with at most k over-
lapping activity feasibility windows, absolute temporal con-
straints, fixed duration activities and fixed value f(ad) is
tractable.

Proof of Theorem 2: Since there are N activities and at
most k overlapping activity feasibility windows, there are
at most N k(k−1)

2 + 2k variables in the VCSP. The domain
size of the independent variables VAB of the problem is 5
(the timepoint variables need not be assigned while solving
the VCSP). Consider the clique bound ω on the constraint
graph of this VCSP. Activity A overlaps with at most k − 1
other activities, and B overlaps with at most k − 1 distinct
activities, leading to a contribution of at most 2k − 2 due to
order and reject constraints. Order and time constraints only
contribute 4 more (one per time-point of each activity.) So,
any variable VA,B has a bound on degree δ(VAB) of 2k + 2.
A time-point variable is involved in at most k − 1 order and
time constraints, and 1 metric temporal constraint. So any
time-point variable has a degree bound δ(A∗) = k. Thus,
we have ω ≤ ∆ ≤ 2k + 2. 2

We can generalize this result to handle the case of a finite
number of duration choices for each activity. Assume that
Ad ∈ {a1

d...a
x
d}, that is, the number of activity durations is

finite. The form of the preferences
∑

i fi(
∑

A∈πi
Ad(T)) is

not limited; however, there are only a finite number of dis-
crete preferences that must be encoded. The order and reject
constraint on VAB , VAC now captures the duration choice:

• (VAB = {<,>,A}) ∧ (Ad = ai
d) ⇔

(VAC = {<,>,A}) ∧ (Ad = ai
d)

• (VAB = {B,⊥}) ⇔ (VAC = {C,⊥})
The order and time constraint on VAB , As, Ae, Ba and Be

also captures the duration choices:

• (VAB =<) ∧ (Ad = ai
d) ∧ (Bd = bj

d) ⇔
(bslb

= aslb
+ ai

d) ∧ (aeub
= beub

− bj
d)

• (VAB =>) ∧ (Ad = ai
d) ∧ (Bd = bj

d) ⇔
(aslb

= bslb
+ bj

d) ∧ (beub
= aeub

− ai
d)

Since the duration choices do not depend on the number
of activities, the increase in size of the constraint represen-
tation does not depend on this either; the constraint graph is
unchanged, so the above argument on the clique size bound
is unchanged. The generalization to finite combinations of
start time and duration choice proceeds similarly.

We can also generalize this result to handle the case of a
resource capacity c < k and unit resource utilization by ac-
tivities. When we do this, we must change the VCSP repre-
sentation slightly. First, we change the set of possible values
of the variables:

• >< (A and B scheduled and overlap, A starts first)
• >> (A and B scheduled and overlap, B starts first)
• < (A and B scheduled and A < B)
• > (A and B scheduled and B < A)
• A (A scheduled, but B rejected)
• B (B scheduled, but A rejected)
• ⊥ (Both A and B rejected)

We then add constraints that force at most c of k activities

to overlap. This amounts to adding
(

k
c + 1

)
constraints

of the form “not all >” to every subset of c + 1 overlap-
ping activities. Finally, we must add a relation to the order
and time constraint capturing the consequences of forcing
overlap: (VAB = ><) ⇔ (As ≤ Bs ∨ Ae ≤ Be), and
(VAB = >>) ⇔ (Bs ≤ As ∨Be ≤ Ae). Even in this case,
the degree of any variable in the VCSP is bounded above by(

k
c + 1

)
+ 2k + 2.

Finally, we can generalize this result to handle metric tem-
poral constraints between timepoints. Essentially, we can
permit any time-point variable’s degree δ(A∗) to grow loga-
rithmically in n, and still maintain tractability.

Empirical Results
In this section we describe a series of experiments to inves-
tigate prototype algorithms utilizing our results. We gener-
ated random problems to test these algorithms and investi-
gate their behavior.

Tractable Choice of Activity Duration
In this section we investigate the case of tractable choice
of activity duration. The input to the random generator are
the horizon size Horz, bounds on feasibility windows size
Wmin and Wmax, bounds on activity durations Dmin and
Dmax, bounds on activity value V min and V max. First,

the activity start time, feasibility window size, and maxi-
mum duration are selected uniformly from the given range.
These characteristics are then modified to ensure that no pair
of activities is a containment pair as follows. Whenever a
new feasibility window A is generated we check to see if
there is already a window B that contains it. If so, we ex-
pand A to just after the latest finishing time Beub

of the con-
taining window. If we find A to be contained in an already
generated window C, we shrink the new window to line up
with the latest finish time Ceub

of the contained window.
To generate a nondecreasing preference for the activity, we
generate the maximum quality and the number of pieces.
We then randomly generate a slope for each piece until the
maximum is reached.

If we recall the LP formulation, we see that the number
of linear constraints is proportional to the number of activ-
ities, and the number of pieces of the preference function.
As such, we generated problems that scale in both of these
parameters to investigate how solution times vary. We fixed
all other parameter values to Horz = 4000, Wmin = 0,
Wmax = 20, Dmin = 0, Dmax = 15, V min = 0
and V max = 40. (Every activity’s minimum duration is
zero, we only generate the upper bound of the duration.) We
ran each parameter setting 100 times and show the mean
and variance in CPU time in Figure 3. The implementa-
tion makes use of lpsolve 5.1 running on an Apple Mac-
intosh G4. Since the time to solve the LP dominates, we
only record this time. We see that solution time increases
linearly with the number of activities for each fixed value
of the maximum number of preference function pieces. We
also see that as the number of activities increases, the rate of
solution time increase also goes up, indicating solution time
becomes more and more dependent on the linear constraints
comprising the preference function.

Tractable Activity Subset Selection
In this section we consider implementation choices that im-
pact performance when solving the tractable case with fixed
duration activities over feasibility windows. We limited our
empirical study to the case of unary resources and one du-
ration option for activities. Thus, the problem is to select a
subset of activities and order them in such a way that the
maximum schedule quality is achieved. We also assume
each activity has a non-zero value.

Rather than directly use generic VCSP algorithms, we
created specialized algorithms that only operate on ordering
variables and use STN propagation. The algorithms incre-
mentally build the complete schedule. At each step they con-
struct schedule prefixes, called sub-schedules, then prune
sub-schedules that are “dominated” by other sub-schedules.
They differ in how the sub-schedules are extended, how
pruning is impacted by these decisions, and ultimately, how
many sub-schedules are stored. Unsurprisingly, the algo-
rithms perform well for different problem regimes, but to our
surprise, a simple algorithm performed better than expected.
All algorithms essentially traverse the activities from those
that can occur “early” to those that can occur “late” in the
schedule. These strategies ensure bounded induced width
on the VCSP.

OCS Problems with No Containment Pairs

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6

Max Pieces of Preference Function

M
e
a
n

 C
P

U
 T

im
e
 (

S
e
co

n
d

s)

200 Tasks 400 Tasks 600 tasks 800 Tasks 1000 Tasks

1200 Tasks 1400 Tasks 1600 Tasks 1800 Tasks 2000 Tasks

Figure 3: Variation in solution time for the case of no con-
tainments.

Domination Rules and Pruning Domination rules for
sub-schedules are based on the combination of three pa-
rameters: the accumulated value of scheduled activities, the
end time of its last activity assuming the sub-schedule is an
earliest-time assignment, and the potential to increase the
value with activities not yet scheduled. Domination is de-
fined as follows:
Definition 4 A sub-schedule S is defined as an earliest-
time assignment of activities that satisfies all resource and
temporal constraints. Let AS be the activities in a sched-
ule S. The extent of a sub-schedule e(S) is maxA∈AS

Ae

i.e. the end time of the last activity in S. The value of S,
v(S), is

∑
A ∈ ASf(ad). The Future Set of S, F(S) is

A ∈ A−AS such that imposing the constraint e(S) < A
does not violate any temporal constraints.

Consider two sub-schedules S and T . S dominates T iff
e(S) ≤ e(T), v(S) ≥ v(T), and F(T) ⊆ F(S).

A common core of the algorithms is the domination pro-
cess, by which newly generated sub-schedules are pruned
by domination. Figure 4 describes the process by which a
new sub-schedule Sn is added to a set S of pairwise-non-
dominated sub-schedules. If any element of S dominates
Sn, it is discarded; otherwise, every schedule in S is checked
and any sub-schedule dominated by Sn is discarded, and Sn

is added to S.

Simple Solver The simplest solver (called Simple-
Solver()) is shown in Figure 5. This solver scans every time
instant in the time horizon. For each instant i, we consider
all possible extensions of all schedules by an activity that
could start at i. We also carry sub-schedules in which no
activity starts at i, since we might be able to start a valu-
able activity after i. Domination rules are used to prune sub-
schedules as defined previously.

Dominate(Sn,S)

for T ∈ S
if T dominates Sn reject Sn and break;

end for
if Sn was not dominated

for T ∈ S
if Sn dominates T

Remove T from S
end if

end for
add Sn to S

end if

Figure 4: The Dominate() routine.

SimpleSolver()

S = {∅}
for each time instant i

for each sub-schedule S ∈ S|e(S) ≤ i
for A ∈ F(S)|(aslb

≤ i ≤ asub
)

Append A to the end of S; call the new schedule Sn

Dominate(Sn,S)
end for
Update e(S) = i + 1; call the new schedule Sm

Dominate(Sm,S)
Remove S from S

end for
end for

Figure 5: The SimpleSolver() algorithm.

FixedPrefix Solver An alternative to building schedules
by iterating over time is to iterate over the number of activi-
ties in the schedule. The FixedPrefixSolver, shown in Figure
6, builds schedules this way. We control the order in which
activities are added to ensure we traverse the activities in an
order ensuring bounded induced width. To do so, for each
sub-schedule S we first identify the activity A whose addi-
tion to the schedule minimally increases the new schedule
e(Sn). We then identify any activity B ∈ F(S) that could
also be added to S, but whose earliest time assignment in S
conflicts with A’s assignment in Sn. We generate all result-
ing sub-schedules. Up to the point where additional activi-
ties cannot be assigned due to conflict with the end horizon,
all newly sub-schedules have the same number of activities.
Again, domination is checked as before.

We found that it is possible to dominate some sub-
schedules without appending activities to the end of them,
by observing that there may be a gap before the next feasi-
ble activity could start. If so, the extent of this schedule is
effectively larger than the end time of it’s last activity, and
this sub-schedule might now be dominated by some other
sub-schedule. This can be accomplished by a simple mod-

FixedPrefixSolver()

S = {∅}
for each sub-schedule S ∈ S

Let A ∈ F(S) minimize e = max(e(S), aslb
) + ad)

Append every activity that could conflict with A
for B ∈ F(S)|(B = A ∨ ((e(S) ≤ bsub

) ∧ (bslb
≤ e)))

Append B to the end of S; call the new schedule Sn

Dominate(Sn,S)
end for
Remove S from S

end for

Figure 6: The FixedPrefixSolver() algorithm.

FixedPrefixSolverEarlyDomination()

S = {∅}
for each sub-schedule S ∈ S

if a = minA∈F(S) aslb
> e(S)

Update e(S) = a; call the new schedule Sm

Dominate(Sm,S)
else

Let A ∈ F(S) minimize e = max(e(S), aslb
) + ad)

Append every activity that could conflict with A
for B ∈ F(S)|(B = A ∨ ((e(S) ≤ bsub

) ∧ (bslb
≤ e)))

Append B to the end of S; call the new schedule Sn

Dominate(Sn,S)
end for

end else
Remove S from S

end for

Figure 7: The FixedPrefixSolverEarlyDomination() algo-
rithm.

ification of the FixedPrefixSolver() algorithm, as shown in
Figure 7.

Problem Generation
Again we used randomly generated problems to investi-
gate the properties of these algorithms. In this case we
do not need to control for the existence of containment
pairs, but must control for the number of overlapping ac-
tivity feasibility windows. We also do not need to gener-
ate a preference function, but instead must choose a sin-
gle value for each activity. In order to explore the range
of behaviors we varied the number of overlapping activi-
ties k = {2, 4, 6} for two horizons, one short and one long.
For Horz = 3000,Wmin = 3,Wmax = 10, Dmin =
1, Dmin = 8, V min = 5, V max = 72 we set the number
of activities n = 100, 200, 300, 400, 500, 600. For Horz =
20000,Wmin = 5,Wmax = 10, Dmin = 5, Dmin =
10, V min = 25, V max = 700 we varied the number of ac-
tivities n = 100, 500, 1000, 1500, 2000. To ensure there was

Algorithm Comparison, 2 Activities Overlap

-2

0

2

4

6

8

10

12

14

16

100 200 300 400 500 600

Number of Activities

M
e
a
n

 C
P

U
 T

im
e
 (

S
e
co

n
d

s)

SimpleSolver FixedPrefixSolver FixedPrefixSolverEarlyDominate

Figure 8: Variation in solution time for the case Horz =
3000, k = 2.

a positive correlation between activity duration and activity
value, the value of an activity was set to the product of its
duration and another randomly chosen value. We generated
100 instances per parameter setting, and show the mean and
variance in CPU time.

The Implications of Implementation The Simple-
Solver() was implemented as a sanity check for the correct-
ness of the other, more sophisticated, algorithm. Given its
code simplicity, it is easy to verify that it is correctly imple-
mented. The SimpleSolver() appears impractical for several
reasons. Scanning each timepoint in the horizon is clearly
inefficient for long horizons, and for real-valued time it is
impossible. Furthermore, we depend on assigning new ac-
tivity start times explicitly, rather than posting ordering con-
straints. We expected the FixPrefixSolver() versions to ulti-
mately dominate the SimpleSolver(), and we also expected
the early domination check to be a strict improvement. Fig-
ure 8 shows a typical example of this. For the case of k = 2,
iteration over the horizon is increasingly dominated by the
other approaches as the number of activities increases

To our surprise, however, the FixPrefixSolver() did not
outperform SimpleSolver() in all cases. This is shown in
Figure 9, where k = 6. SimpleSolver() begins to outper-
form the other two algorithms as more and more activities
are added. Comparing the performances of SimpleSolver()
and FixedPrefixSolver(), SimpleSolver() seems to have bet-
ter performance on problems that are dense with many com-
peting activities. This is because simply traversing the hori-
zon pays off when some new activity could start at almost
each timepoint on the horizon. For completeness, we show
the same data for Horz = 20000 in Figures 10 and 11 and
see a similar trend.

One possible explanation for the difference in perfor-

Algorithm Comparison, 6 Activities Overlap

-5

0

5

10

15

20

25

30

35

40

100 200 300 400 500 600

Number of Activities

M
e
a
n

 C
P

U
 T

im
e
 (

S
e
co

n
d

s)

SimpleSolver FixedPrefixSolver FixedPrefixSolverEarlyDominate

Figure 9: Variation in solution time for the case Horz =
3000, k = 6.

mance between the algorithms is the potential for variation
in the extent of the sub-schedules. The SimpleSolver() im-
plicitly controls the extent e(S) of the sub-schedules S ∈ S
by only adding activities that can start at i (the current time-
point). If the maximum duration is du then the extents of
sub-schedules can differ by at most du (because of how the
extents of schedules are adjusted when no activity is ap-
pended). By contrast, there is no such control of the extent
in the FixedPrefixSolver(). This divergence in extent may
lead the FixedPrefixSolver() to generate many undominated
schedules.

FixedPrefixSolverEarlyDominate() is guaranteed to out-
perform FixPrefixSolver() in terms of maximum number of
sub-scheduels carried (earlier detection of dominations) in
all cases. Generally, one would expect the runtime perfor-
mance to follow this trend; we found this to be the case in
our experiments. The trend is most clearly seen in Figure 11;
we see that adding the early domination detection prevents
the generation of large numbers of schedules as the number
of activities increases, leading to significant time savings.

Related Work
Wang and Smith (WS05) address a scheduling problem sim-
ilar to the OCS. Their work differs from ours in several
ways. The flexibility of their activity durations are defined
by a minimum value but no maximum value (ours has both).
The activity feasibility window extends from a release time
to the end of the scheduling horizon (ours extend to a due
date that is any where between the release and end of the
horizon). They allow no rejection of activities (we handle
rejections). Their quality profile associated with each activ-
ity is linear (ours is piece-wise linear) and depends only on
activity duration. The simple case of this problem, where

Algorithm Comparison, 2 Activity Overlap

-20

0

20

40

60

80

100

120

100 500 1000 1500 2000

Number of Activities

 M
e
a
n

 C
P

U
 t

im
e
 (

S
e
co

n
d

s)

SimpleSolver FixedPrefixSolver FixedPrefixSolverEarlyDominate

Figure 10: Variation in solution time for the case Horz =
20000, k = 2.

resource capacity is 1, reduces to Linear Programming. We
also observe that, given that all windows extend all the way
to the end of the horizon, inequalities ensure there is no con-
tainment pairs, which implies there is an easy to determine
optimal ordering for the activities.

Bartlett et al. (BFH+05) discuss algorithms for the NP-
complete Temporal Knapsack Problem (TKP). Peinter et
al. (PMP05) describe algorithms for the even more general
Disjunctive Temporal Constraints with Preferences prob-
lem. These problems are quite general, allowing for multi-
capacity resources, and complex preferences for satisfy-
ing activities. We observe that our tractable OCS classes
map naturally into tractable classes of these problems. We
point out that the TKP formulation stipulates integer time,
which leads to Integer Linear Programming (ILP) formula-
tions that have one constraint per time-point. We make no
such assumptions in general about OCS, although some of
our tractability results depend on discrete activity duration
choices.

As previously discussed, Morris et al. (MMK+04) in-
troduce a tractable problem that combines Simple Temporal
Networks with convex preferences on inter-event distances.
Kumar (Kum04) shows that STPPs where preferences are
piecewise constant are tractable. This is distinguished from
the results due to (MMK+04) by the fact that the prefer-
ence function need not be convex. The solution methodol-
ogy used is weighted anti-chains, which may be more effi-
cient than the more general Linear Programming techniques
used in our work and by (MMK+04).

Numerous authors, including (SS00), have considered
tractable combinatorial auction problems. We observe that
our tractable classes provide numerous ways to extend such
results, even in the case where the auction combines combi-
natorial choices (which bids to award) with arbitrarily divis-

Algorithm Comparison, 6 Activity Overlap

-200

0

200

400

600

800

1000

1200

100 500 1000 1500 2000

Number of Activities

M
e
a
n

 C
P

U
 t

im
e
 (

S
e
co

n
d

s)

SimpleSolver FixPrefixSolver FixedPrefixSolverEarlyDominate

Figure 11: Variation in solution time for the case Horz =
20000, k = 6.

ible goods (how much time to award).

Conclusions and Future Work
We have described the Optimal Competitive Scheduling
(OCS) problem as one of selecting, ordering and choosing
activity duration, constrained by temporal and resource con-
straints, in order to optimize a global objective. We have de-
scribed tractable OCS problems for a variety of quite reason-
able, but restricted, assumptions. Our tractable classes both
extend the state of the art in temporal problems with pref-
erences, and make use of existing work on solving tractable
VCSPs. Figure 12 places these results in context with exist-
ing work in this area. We have also described empirical re-
sults showing that problem characteristics impact algorithm
performance. When selecting activity duration only, the LP
formulation is affected by the number of activities and the
characteristics of the preference function. When also select-
ing subsets of activities and ordering, the “density” of the
schedule dictates which of two algorithms performs best.
We have also shown that, even these tractable problems, care
must be taken to ensure that all available information is ex-
ploited to achieve good performance.

While these results close the gap between tractable and
intractable optimization problems, there are still open ques-
tions to be resolved. The tractable case of activity duration
requires that no pair of feasibility windows are containment
pairs. Relaxing this assumption may be possible.

The most general case of tractable activity subset se-
lection requires discrete choices for durations (as well as
bounded induced width of the underlying constraint graph).
Extending this case to handle continuous durations with a
reasonable assumption on the form of the preference func-
tion (e.g. piecewise linear) would also lead to a significant

(This Paper)

feasible STNs,
convex prefs,

order imposed,
no activity rejection

(MoMo+04)

Temporal Knapsack
(BFH+05)NP-complete

Tractable
feasible STNs,
convex prefs,

order imposed,
zero duration

feasible STNs,
convex prefs,

no contains-pairs

feasible STNs,
piecewise const prefs, order

imposed,
no activity rejection

(Ku05)
Weighted Interval graphs

(SS00)

OCS

Discrete durations,
convex feasibility window,

limited inter-task constraints,
bounded overlap

Overconstrained
DTPPS

(PMP05)

resource capacity >1
(WS05)

resource capacity =1

Figure 12: Theoretical Results in this paper, placed in con-
text of previous work.

advance in the theory of tractable VCSPs.
None of the work in this paper or related work addresses

the case of preference problems with setup actions. These
actions consume time that might otherwise be used for val-
ued activities. The most general case of sequence dependent
setup actions might influence otherwise optimal schedules.

A final avenue of interesting work is concerned with ap-
proximate solutions. In particular, this may be a promising
way to handle non-convex preference functions; these func-
tions can be bounded above or below by convex preferences.
The open issue is how to reason about the quality of solu-
tions in such cases.

References
M. Bartlett, A. Frisch, Y. Hamadi, I Miguel, S. Tarim,
and C. Unsworth. The temporal knapsack problem and its
solution. In Proceedings of the 2d International Confer-
ence on Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems,
pages 34 – 48, 2005.
J. Bresina. Heuristic-biased stochastic sampling. In Pro-
ceedings of the 13th National Conference on Artificial In-
telligence, 1996.
P. Brücker. Scheduling Algorithms. Springer, 1998.
L. Barbulescu, D. Whitley, and A. Howe. Leap before you
look: An effective strategy in an oversubscribed scheduling
problem. In Proceedings of the 19th National Conference
on Artificial Intelligence, 2004.
R. Dechter. Constraint Processing. Morgan Kauffmann,
2003.
R. Dechter, I. Meiri, and J. Pearl. Temporal constraint net-
works. Artificial Intelligence, 49:61–94, 1991.
J. Frank and E. Kürklü. High and dry: Trading water vapor,

fuel and observing time for airborne infrared astronomy.
In Proceedings of the 25th International Geoscience and
Remote Sensing Symposium, 2005.
M. Golumbic. Algorithmic Graph Theory and Perfect
Graphs. Academic Press, 1980.
T. K. Satish Kumar. A polynomial time algorithm for sim-
ple temporal prefrerence problems with piecewise constant
domain preference functions. In Proceedings of the 19th

National Conference on Artificial Intelligence, pages 67–
72, 2004.
J. Larrosa and P. Meseguer. Boosting search with variable
elimination in constraint optimization and constraint satis-
faction problems. Journal of Constraints, 8(3):303–326,
2003.
P. Morris, R. Morris, L. Khatib, S. Ramakrishnan, and
A. Bachmann. Strategies for global optimization of tem-
poral preferences. In Proceedings of the 10th International
Conference on the Principles and Practices of Constraint
Programming, pages 408 –422, 2004.
B. Peinter, M. D. Moffitt, and M. E. Pollack. Solving
overconstrained disjunctive temporal problems with prefer-
ences. In Proceedings of the 15th International Conference
on Automated Planning and Scheduling, 2005.
D. J. Rose and R. E. Tarjan G. S. Lueker. Algorithmic as-
pects of vertex elimination on graphs. SIAM J. Computing,
5:266–283, 1976.
H. D. Sherali and F. Nordai. NP-hard, capacitated, bal-
anced p-median problems on a chain graph. Mathematics
of Operations Research, 13(1):32–49, 1988.
T. Sandholm and S. Suri. Improved algorithms for optimal
winner determination in combinatorial auctions and gener-
alizations. In Proceedings of the 17th National Conference
on Artificial Intelligence, pages 90–96, 2000.
W. Wolfe and S. Sorensen. Three scheduling algorithms
applied to the earth observing domain. Management Sci-
ence, 46(1), 2000.
X. Wang and S. Smith. Retaining flexibility to maximize
quality: When the scheduler has the right to decide activity
duration. In Proceedings of the International Conference
on Automated Planning and Scheduling, 2005.

